

Tracers to study human metabolism in vivo

Bettina Mittendorfer

Washington University School of Medicine

St. Louis, MO

Goal(s)

What is a tracer?

Basic prinicples for application

Basic nomenclature

Analysis

What is a tracer?

Tracer = a substance added to the system to trace out a metabolic pathway (radio-active vs. stable isotope)

Tracee = the native substrate being traced

Stable isotope labeled tracers

Isotopes = elements (i.e., same number of p^+) with different numbers of neutrons; hence different atomic weight (i.e., $\sum p^+$ and n)

Element	Stable isotope	Atomic weight	Atom % natural abundance
Н	1	1.008	99.985
	2	2.014	0.015
С	12	12.000	98.89
	13	13.003	1.11
N	14	14.003	99.63
	15	15.000	0.37
O	16	15.995	99.76
	18	17.999	0.204

Stable isotope labeled tracers

Stable isotope labeled tracer = structurally identical molecule that differs in isotopomer distribution, and therefore molecular mass, from tracee

Stable isotope labeled tracers

Some examples

 $[6,6-^2H_2]$ glucose \Rightarrow ¹H in position 6 of glucose exchanged for ²H

 $[1-^{13}C_1]$ palmitic acid \Rightarrow ^{12}C in position 1 in palmitic acid exchanged for ^{13}C

Why do we like tracers?

Because we can measure metabolic flux.

For example,

Muscle mass ↓

Muscle mass ↑

Why?

Is it in/decreased breakdown, in/decreased synthesis, both?

FFA flux and plasma concentration during exercise

Muscle protein synthesis and breakdown with aging

FFA conc

FFA appearance in plasma ↑ but FFA uptake by muscle ↑ ↑ Hence, FFA conc in plasma ↓

Assumptions that need to be fulfilled when using tracers

Tracer is physically, chemically, and metabolically indistinguishable from tracee

Metabolic kinetics are independent of the tracer used

Provides a massless perturbation to the system to avoid counter regulatory responses

Basic principles for the use of tracers

Dilution (e.g., lipolysis, proteolysis)

Degree of tracer dilution → rate of delivery of tracee

 t_2

Incorporation into macromolecule
(precursor product relationship
e.g., muscle protein, lipoproteins)

Degree of tracer incorporation → rate of synthesis

Tracer conversion (fatty acid $\rightarrow CO_2$)

They can be used at whole-body level, across organs, across body sections (limb), tissue specific (e.g., muscle, skin)

Isotopic Dilution - Steady State Rate of Appearance (Ra) & Disappearance (Rd)

$$Rd = Ra + IR$$

glucose uptake = glucose Rd

Ra - bolus injection

$$IE_t = IE_0 \bullet e^{-kt}$$

Two/Three-pool steady-state model

Incorporation into macromolecule (precursor product relationship)

e.g., muscle protein synthesis

Incorporation into macromolecule (precursor product relationship)

e.g., muscle protein synthesis

$$E_{t} = E_{p} (1 - e^{-kt})$$

$$\frac{dE_{t}}{dt} \Big|_{t=0} = E_{p} \cdot k$$

$$k = \frac{\text{initial slope}}{E_{p}}$$

$$FSR \approx \frac{E_{t_{2}} - E_{t_{1}}}{(t_{2} - t_{1}) \cdot E_{p}}$$
Absolute production rate = FSR x pool size

Glycerol bolus and mono-exponential slope analysis for the determination of VLDL-TG secretion rate

Substrate oxidation

Infuse

Measure

¹³CO₂ production (in breath, across organ/tissue etc)

Stable isotope labeled tracer analysis via Mass Spectrometry

Gas Isotope Ratio MS (for H₂, N₂, CO₂)
Gas Chromatograph/Liquid Chromatography MS (very versatile, suitable for complex molecules)
GC combustion IRMS

Long chain fatty acid separation via GC

Selective ion monitiring (SIM) → Ratio of two peak areas

Tracer-tracee ratio (TTR) = m+z/m+0

APE or MPE = TTR / (TTR + 1)] = percent of sample that is enriched

#