Wednesday, October 18, 2017 Print page
 
Centre of Inflammation and Metabolism (CIM)
 

Publications

To read the abstract, please click on the title of the publication of interest. If you want to access the publication on PubMed, please click on the PubMed ID.
To find specific publications, please use the sort and search functions. Please enter one word only as search term.

Click here to see all publications

86Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle.
Ringholm S; Bienso RS; Kiilerich K; Guadalupe-Grau A; Aachmann-Andersen NJ; Saltin B; Plomgaard P; Lundby C; Wojtaszewski JF; Calbet JA; Pilegaard H
Am J Physiol Endocrinol Metab 2011; 301(4): E649-58
PubMed ID: 21750272

The aim was to test the hypothesis that 7 days of bed rest reduces mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after bed rest. Twelve young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from six of the subjects prior to, immediately after, and 3 h after 45 min of one-legged knee extensor exercise performed before and after bed rest. Maximal oxygen uptake decreased by 4%, and exercise endurance decreased nonsignificantly, by 11%, by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content approximately 45%, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity approximately 8%, and miR-1 and miR-133a content approximately 10%. However, cytochrome c and vascular endothelial growth factor (VEGF) protein content as well as capillarization did not change significantly with bed rest. Acute exercise increased AMP-activated protein kinase phosphorylation, peroxisome proliferator activated receptor-gamma coactivator-1alpha, and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. The present findings indicate that only 7 days of physical inactivity reduces skeletal muscle metabolic capacity as well as abolishes exercise-induced adaptive gene responses, likely reflecting an interference with the ability of skeletal muscle to adapt to exercise.



 
© 2017 Centre of Inflammation and Metabolism
www.inflammation-metabolism.dk