Thursday, October 18, 2018 Print page
Centre of Inflammation and Metabolism (CIM)


To read the abstract, please click on the title of the publication of interest. If you want to access the publication on PubMed, please click on the PubMed ID.
To find specific publications, please use the sort and search functions. Please enter one word only as search term.

Click here to see all publications

104Cerebral formation of free radicals during hypoxia does not cause structural damage and is associated with a reduction in mitochondrial PO2; evidence of O2-sensing in humans?
Bailey DM; Taudorf S; Berg RM; Lundby C; Pedersen BK; Rasmussen P; Moller K
J Cereb Blood Flow Metab 2011; 31(4): 1020-6
PubMed ID: 21304557

Cellular hypoxia triggers a homeostatic increase in mitochondrial free radical signaling. In this study, blood was obtained from the radial artery and jugular venous bulb in 10 men during normoxia and 9 hours hypoxia (12.9% O(2)). Mitochondrial oxygen tension (p(O(2))(mit)) was derived from cerebral blood flow and blood gases. The ascorbate radical (A(*-)) was detected by electron paramagnetic resonance spectroscopy and neuron-specific enolase (NSE), a biomarker of neuronal injury, by enzyme-linked immunosorbent assay. Hypoxia increased the cerebral output of A(*-) in proportion to the reduction in p(O(2))(mit), but did not affect NSE exchange. These findings suggest that neuro-oxidative stress may constitute an adaptive response.

© 2018 Centre of Inflammation and Metabolism