Saturday, March 25, 2017 Print page
 
Centre of Inflammation and Metabolism (CIM)
 

Publications

To read the abstract, please click on the title of the publication of interest. If you want to access the publication on PubMed, please click on the PubMed ID.
To find specific publications, please use the sort and search functions. Please enter one word only as search term.

Click here to see all publications

272Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise.
Frydelund-Larsen L; Akerstrom T; Nielsen S; Keller P; Keller C; Pedersen BK
Am J Physiol Endocrinol Metab 2007; 292(1): E24-31
PubMed ID: 16868228

Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4.5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied by elevated levels of plasma visfatin. Recombinant human IL-6 infusion to mimic the exercise-induced IL-6 response (n = 6) had no effect on visfatin mRNA expression in adipose tissue compared with the effect of placebo infusion (n = 6). The finding that exercise enhances subcutaneous adipose tissue visfatin mRNA expression suggests that visfatin has a local metabolic role in the recovery period following exercise.



 
© 2017 Centre of Inflammation and Metabolism
www.inflammation-metabolism.dk