Saturday, March 25, 2017 Print page
 
Centre of Inflammation and Metabolism (CIM)
 

Publications

To read the abstract, please click on the title of the publication of interest. If you want to access the publication on PubMed, please click on the PubMed ID.
To find specific publications, please use the sort and search functions. Please enter one word only as search term.

Click here to see all publications

301Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
Jorgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
FASEB J 2005; 19(9): 1146-8
PubMed ID: 15878932

We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body alpha2- and alpha1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmill running (90 min), and in recovery. Running increased alpha1-AMPK kinase activity, phosphorylation (P) of AMPK, and acetyl-CoA carboxylase (ACC)beta in alpha2-WT and alpha2-KO muscles and increased alpha2-AMPK kinase activity in alpha2-WT. In alpha2-KO muscles, AMPK-P and ACCbeta-P were markedly lower compared with alpha2-WT. However, in alpha1-WT and alpha1-KO muscles, AMPK-P and ACCbeta-P levels were identical at rest and increased similarly during exercise in the two genotypes. The alpha2-KO decreased peroxisome-proliferator-activated receptor gamma coactivator (PGC)-1alpha, uncoupling protein-3 (UCP3), and hexokinase II (HKII) transcription at rest but did not affect exercise-induced transcription. Exercise increased the mRNA content of PGC-1alpha, Forkhead box class O (FOXO)1, HKII, and pyruvate dehydrogenase kinase 4 (PDK4) similarly in alpha2-WT and alpha2-KO mice, whereas glucose transporter GLUT 4, carnitine palmitoyltransferase 1 (CPTI), lipoprotein lipase, and UCP3 mRNA were unchanged by exercise in both genotypes. CPTI mRNA was lower in alpha2-KO muscles than in alpha2-WT muscles at all time-points. In alpha1-WT and alpha1-KO muscles, running increased the mRNA content of PGC-1alpha and FOXO1 similarly. The alpha2-KO was associated with lower muscle adenosine 5'-triphosphate content, and the inosine monophosphate content increased substantially at the end of exercise only in alpha2-KO muscles. In addition, subcutaneous injection of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) increased the mRNA content of PGC-1alpha, HKII, FOXO1, PDK4, and UCP3, and alpha2-KO abolished the AICAR-induced increases in PGC-1alpha and HKII mRNA. In conclusion, KO of the alpha2- but not the alpha1-AMPK isoform markedly diminished AMPK activation during running. Nevertheless, exercise-induced activation of the investigated genes in mouse skeletal muscle was not impaired in alpha1- or alpha2-AMPK KO muscles. Although it cannot be ruled out that activation of the remaining alpha-isoform is sufficient to increase gene activation during exercise, the present data do not support an essential role of AMPK in regulating exercise-induced gene activation in skeletal muscle.



 
© 2017 Centre of Inflammation and Metabolism
www.inflammation-metabolism.dk